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Invariants for the time-dependent harmonic oscillator: I 

R K Colegrave and M Sebawe Abdallaf 
Department of Mathematics, Chelsea College (University of London), 552 King’s Road, 
London SW10, UK 

Received 17 January 1983, in final form 10 June 1983 

Abstract. Two equivalent families of linear invariants and two equivalent families of 
quadratic invariants are obtained for a harmonic oscillator with variable mass or with 
variable frequency. Explicit formulae are obtained for the linear and quadratic invariants 
in the case of a damped oscillator and the Hamiltonian is seen as a special quadratic 
invariant. 

1. Introduction 

A second-degree invariant for the variable-frequency oscillator with Hamiltonian 

H ( t )  = f p2 /Mo+fMow2( t )q2 ,  (1.1) 

associated with the problem of a slowly lengthening pendulum, is well known (Lewis 
1967,1968, Lewis and Riesenfeld 1969, Wollenberg 1980). The invariant has the form 

I ( t )  =q2/u2+(c jq  - q / M o ) 2 ,  (1.2) 

& + w 2 ( t ) u  = l /u  * 

where v(t)  is any solution of the Pinney equation (Pinney 1950) 

(1.3) 

Lutzky (1978) has related the Lewis invariant (1.2) to a Noether symmetry (Noether 
1918) and an interesting review and extension of the group-theoretic approach has 
been given by Prince and Eliezer (1980). The problem of the time-dependent oscillator 
(1.1) and its invariants continues to attract lively attention and we single out the 
contributions made by Leach (1977), Lewis and Leach (1982), Wollenberg (1983) 
and Ray et a1 (1982). 

3 

We have studied the variable-mass oscillator with Hamiltonian 

H ( t )  = i p 2 / M ( t ) + $ t ! f ( t ) w ; q 2 ,  (1.4) 

and we shall show that both systems (1.1) and (1.4) possess two equivalent families 
of linear and quadratic invariants. The alternative quadratic invariant €or the variable- 
frequency system (1.1) will be shown to have the form 

f ( t )  = e 2 / p 2 + { M o p q  + ~ / U ~ ( ~ ) I P I ~ ,  (1.5) 

Permanent address: Department of Mathematics, College of Science, University of King Saud, PO Box 
2455, Riyadh, Saudi Arabia. 
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3806 R K Colegrave and M Seba we Abdalla 

where p is any solution of the modified Pinney equation 

(1.6) 4 3 i; -2(b/w)p + w 2 ( t ) p  = U  ( t ) / p  . 
The relatively simple linear invariants do not seem to have attracted much attention, 

although the corresponding symmetry group generators for the system (1.1) have been 
displayed by several authors (e.g. Prince and Eliezer 1980, Ray et a1 1982). 

For simplicity of treatment we shall refer to classical mechanics. The extension 
to quantum mechanics is achieved formally by the simple procedure of symmetrising 
the product q p  wherever it occurs. A fuller discussion is given by Wollenberg (1980). 

2. The variable-mass oscillator 

The variable-mass oscillator is conveniently treated by rescaling the coordinate and 
momentum so that (with M,, some constant mass) 

Q ( t )  = [M(t)/M31”24, P ( t )  = [Mo/M(t p 2 p .  (2.1) 

K ( t )  = tP2 /Mo+:Mou~Q2+&( t )QP,  (2.2) 

The Hamiltonian (1.4) transforms to 

where the time occurs solely in E ( t )  which is given by 

E( t )= (1 /2M)dM/d t  (2.3) 
(Colegrave and Abdalla 1981, 1982). We note that in the particular case of an 
exponentially decaying (or growing) mass, K is constant since for any Hamiltonian 
H,  d H / a t  = 0 + dH/dt = 0. 

0 = x / a P  = P / M ~  + EQ, 

The decoupled equations for Q and P are 

The equations of motion are 

P = -aK/aQ = -Mow gQ - FP. (2.4~1, b )  

Q +O&(t )Q  = 0 ,  R;(r) = w ; - & % ,  ( 2 . 5 ~  

(2.56 

(a) A damped oscillator: M(tj = M u  exp(-2rt)  3 e = -r, n’,= Q’,= w ( : - r 2  (con 

(b) 4 strongly pulsating oscillator: M ( t )  = M O  cos’ ut 3 E = -v tan vt, n’,= 

(cj Another strongly pulsating oscillator: M ( t )  = M O  sec2 vt 3 E = v tan vt, n’,= 

(d) A single-pulse oscillator: M(t)  = M O  sech’ ut + F = - V  tanh vt, a;= U : -  v 2  

(e) A moderately pulsating oscillator: M ( t )  = M O  exp(2p sin v t )  3 E = pv cos vt, 

We note that in (bj  or (c) (or 0;) changes sign periodically, but this does not 
unduly complicate the calculation of P (or Q), since 0 (or P )  is calculated first and 
then equation ( 2 . 4 ~ )  (or (2.46)) is used to calculate the second dynamical variable 
(Colegrave and Abdalla 1982). 

P + n;ct )P  = 0, R; ( t )=w”-& 2 2  + & *  

Some examples of the variable-mass system are the following: 

stant). 

wi+v2 (constant), ng= nL-2v ’  sec2 vt. 

w i + v 2  (constant), ~ ’ , = ~ ~ - 2 v ’ s e c ~  2 vt. 

(constant), Cl; = 2v2 sech’ vt. 

~ ~ = w ~ - p ’ v ‘ c o s *  v t+pv  2 sin vt, n ; = w O - p  2 2 2  v cos 2 v t - p u  2 sin vr. 
- 
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2.1. Linear invariants 

We begin by seeking a first-degree invariant 

J ( t ) = A ( t ) Q + p ( t ) P .  

We require (Goldstein 1980) 

J = aJ/at + (aJ /aQ)  aK/ap - (aJ/ap) aK/aQ = 0, 

from which we see that A and p must satisfy 

= - h / M o + p E .  2 A =Mowop - -A&,  

Eliminating p we find 
2 2  A + n;(t)A = 0, n ; ( t ) = w o - E  + & *  (2.9) 

Let us denote any solution of (2.9) by A = P O ( ? ) ;  then we use ( 2 . 8 ~ )  to find p and the 
invariant (2.6) assumes the form 

(2.10) 2 J")  = + ( b o  + E P o ) ~ / ( ~ o w o ) .  

/.i + R2,(t)p = 0, 

Again, eliminating A from (2.8), we find 

(2.1 1) 

We denote any solution of (2.11) by p =a"(t)  and solve (2.86) for A ;  then (2.6) 

(2.12) 

We note the similarity between equations (2.4) and (2.8) and also between (2,5a, 6 )  
and (2.9), (2.1 1). The exchange transformation 

Q - p ,  P O  -A,  (2.13) 

2 2  R2,(t) = W O - &  -&. 

gives a second invariant 

J ' Q '  = ooP -MO(&' - &c+")Q. 

changes the equations for U ,  P into those for A ,  p and changes the sign of J.  

2.2. Quadratic in ua rian ts 

In a similar way we seek a second-degree invariant 

I ( ? )  = cy ( t ) Q 2 + P ( t ) P 2 +  Z-y(t)QP, 

Ci = 2Mowc:y - 2& ( t )a ,  

(2.14) 

(2.15a, b )  

12 .15~)  

A first integral of equations (2.15) is obtained by multiplying ( 2 . 1 5 ~ )  by p and (2.156) 
by cy and adding. This leads to 

which requires 
p = -2 y/Mo + 2& ( t ) P ,  

2 .i = -cu/M,,+M,w"p. 

cy@ = y 2 + A ,  (2.16) 

where A is a constant (cf Wollenberg 1980, theorem 2). Taking A = O  leads to the 
linear invariants of pi 2.1. 

Let us substitute in (2.156) for p from (2.16) and for y from ( 2 . 1 5 ~ ) .  This leads 
to 

$(& -Ci2/2a)= -R;(t)cy +M$.o~&/~ .  (2.17) 
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Let us write a = M&:A and p ( t )  = a - 1 / 4 ~ ’ / 2 ( t ) ;  then (2.17) reduces to 
(2.18) 

The problem is now identifiable with that of Lewis and Riesenfeld (1969) in connection 
with the variable-frequency oscillator described by the Hamiltonian (1.1). With p any 
solution of (2.18) an invariant for the variable mass system (1.4) is 

(2.19) 

A second family of invariants may be found by following a similar procedure, first 
eliminating (Y and solving for p. This leads to 

(2.20) 

2 2  
i; + n % t ) p  = l /p3 ,  n&=&J,-& + E .  

2 4 -1/2 ( P ) -  MOwOa I - [MOw&Q+(p  + ~ p ) P l ~ + P ~ / p ~ .  

$(P -b2 /2P)  = -n$(t)p + A / ( M & 3 ) .  

& + n;(tla = 11a3, n;(t) =&- E 2 -  E .  (2.21) 

M ~ 2 b ~ ” 2 1 ’ Q ’ =  Q 2 / a 2 +  [(b - E U ) Q  -UP/MO]~.  

With b = A / M i  and a(t)  = b - l l 4 p  ‘ / * ( f )  equation (2.20) transforms to 

Thus with U any solution of (2.21) a second quadratic invariant is 

(2.22) 

We notice the similarity with the J invariants of 9: 2.1. The relation between the 
functions p and pa is (Lewis 1968, Prince and Eliezer 1980, Wollenberg 1983) 

(2.23) 

where p?,  p i  are linearly independent solutions of equations (2.9), 1, m, n are constants 
such that 

lm - n 2 =  ~ ( p ? , p ; ) - ~  (2.24) 
and W is the Wronskian. We have a similar relation between U and a’. 

0 0 1 / 2  
P = [ I (P?) ’+  m b;12 + 2np1~2I , 

We shall discuss the connection between { I i Q ’ }  and {I“’} in $ 4 .  

3. The variable-frequency system 

We are now in a position to discuss Lewis and Riesenfeld’s problem defined by the 
Hamiltonian (1.1). The Hamilton equations are 

(3 . la ,  b) 4 = aH/ap =p/Mo,  p = -aH/aq = -M,W 2 (t)q.  

The separate equations for q and p are 

4+u2( t )q  = 0, d’ -  2(b/U)P + u 2 ( t ) p  = 0. (3.2a, 6 )  
We can make (3.26) fit into the pattern of (2.5b) by writing 

so that 
p = PIU ( t ) ,  ( 3 . 2 ~ )  

P + w ; ( t ) P  = 0, & ( t )  = w 2 ( t ) + & / w  -2(w/w)2. (3.2d) 

3.1. Linear invariants 

We seek an invariant 

J = h ( t ) q + v ( t ) p ;  (3.3) 
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then using the Hamiltonian (1.1) we find 

A =M,w2( t )v ,  V = -A/Mo. (3.4) 

Eliminating A gives 

L’ + w 2 ( t ) v  = 0 (3.5) 

and eliminating v gives 

A -2(&/w)A +w2( t )A  = O  ( 3 . 6 ~ )  

or, with w = A / w  ( t )  (cf equations (3.2c, d ) ) ,  

/i +w’p( t )p  = 0, w’p = w 2 ( t ) + ( ; i / w  -2(Lj/w)2. (3.66) 

We notice again that the transformation (cf (2.13)) 

4 * v ,  P * - &  (3.7) 
changes (3.1) into (3.4) and makes J + -J. Let go, p o  denote any solutions of (3.5). 
( 3 . 6 ~ )  respectively; then linear invariants (3.3) analogous to (2.10) and (2.12) are 

f P ’  =poq  +&50p/[Mow2(t)], fq) = u o p  -Mo&oq. (3.8a, b )  

Alternatively, let 7’ be any solution of (3.66); then we may rewrite ( 3 . 8 ~ )  in the form 
(with P = p / w ( t )  as in ( 3 . 2 ~ ) )  

( 3 . 8 ~ )  PP’ = w(t)7Oq +[io+ (&/w)7°p/Mo.  

3.2. Quadratic invariants 

For a quadratic invariant 

I = ff 014 + P (t)P + 2Y (3.9) 
associated with the Hamiltonian (1.1) we find (cf Lewis and Riesenfeld 1969) 

ff = 2Mow2(t)y, 6 = -2r/Mo, (3.10a, 6 )  

i. = -ff/Mo+Mou2(t)p. ( 3 . 1 0 ~ )  

Again, as noted by Wollenberg (1980), a first integral exists of the form 

(YP = y 2 + B .  (3.11) 

Following Lewis and Risenfeld (1969) and putting 

c = M i B ,  (3.12) 1 / 2  2 
P = c  P ,  

we obtain equation (1.3) and the invariant (1.2) which we may write in the form 

M;2c-1/2r(q) = 4 2 / a 2 +  (U4 -up /Mo)2 .  (3.13) 

However, if we eliminate P and solve for cr by setting 

(3.14) 1/2  2 
CY =Moc p 

we obtain equation (1.6) and the invariant (1.5). Alternatively, if we write 

w ( f )  = p ( f ) l u ( t ) ,  (3.15) 
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then we obtain Pinney's equation (cf equations (3.2d) and (3.66)) 

CL + w i ( t ) p  = 1 / p  3 , w ;  =w2(t)+C; i /w -2(&/w)*. (3.16) 

The associated invariant (1.5) can be written in the alternative forms 

Moc - l ' * P p )  = p 2 / p  + {Mopq + b / w  2 ( t ) ] p } 2  

= P*/T2 +{Mow ( t ) q  + [i + (&/w)T]P}2,  (3.17) 

where P = p / u ( t )  and T is any solution of (3.16). The connection between T and T O  
is as described for p and p o  in (2.23). 

4. Connections between the invariants 

We return to the case of variable mass discussed in S; 2. The equations for the scaled 
coordinate Q and momentum P are more symmetrical than the equations for q and 
p in 9: 3, and consequently the analysis is tidier. However, our discussion can be 
extended quite easily to the variable-frequency case. 

4.1. Exchange symmetry 

We multiply J"' given by (2.10) by a factor so that it has the same dimensions as 
J ' O '  given by (2.12); thus 

J"' = M o w o p o ( t ) Q  + ( b o + ~ p o ) P / w o ,  ~ ' Q ' = a o ( t ) P - M o ( ~ o - ~ a o ) Q ,  (4 . lu ,6)  

( 4 . 1 ~ )  

(4 . ld )  

Similarly, we shall take the second-degree invariants (2.19), (2.22) to have the same 

( 4 . 2 ~ )  

(4.26) 

(4.2c, d )  

(4.3) 

(4.4) 

( 4 5 )  

(4.56) 

(4.52) 
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4.2. Linear invariants 

We may write the general solution of (2 .8a,  b )  in the form 

A = po  = Mowoao(P 7 + k p : ) ,  

p = an = a o [ G y + E p : )  + k @ :  + EP:)]/w~, 

( 4 . 5 d )  

( 4 . 5 e )  

( 4 . 6 ~ )  

(4 .66 )  

where ao,  k are arbitrary constants andp y ,  p: are independent solutions oft; + n g ( t ) p  = 
0. Alternatively we may write 

( 4 . 7 a )  

( 4 . 7 6 )  

where bo, k '  are arbitrary constants and a?,a: are independent solutions of & +  
n;(t)a = 0. Obviously the invariants ( 4 . l a ,  b )  interchange on switching from one of 
the alternatives ( 4 . 6 ) ,  (4 .7 )  to the other. The constants k ,  k' provide parametrisations 
for fP), JIQ' respectively and it is clear that a one-one correspondence exists between 
k, k '  such that (apart from a possible multiplicative factor) f P ' ( k )  = J ' O ' ( k ' ) ,  i.e. the 
two families {J '"(k)} ,  { J ' Q ' ( k ' ) }  coincide. 

A linear invariant is a certain linear combination of the initial (scaled) position 
and momentum. As an example, let us take the case of damping ( E  = -r, constant); 
t h e n w i t h k = O , a o = l , p ' : = c o s w t  ( ~ ~ = w ; - r ~ ) i n  (4 .6)  

j I P ' ( k  = 0) =Mowo cos otQ(t) - (W sin ut + r  cos o t )P( t  ) / w o  

A=ppO=-M ob&&-(: - &U:) + k'(&: - E V ; ) ] ,  

p =ao=b"(a ;+k 'a2 ) ,  0 

= MowoQ(0) - (F /wo)P(0 ) .  (4 .8 )  

4.3. Quadratic invariants 

Let us consider the general solution of the linear equations ( 2 . 1 5 ) .  We note that: 
(i) if a ( t ) ,  p ( t ) ,  y ( t )  is a solution, then so is z a ( t ) ,  z p ( t ) ,  z y ( t ) ,  where z is any 

constant, 
(ii) apart from an arbitrary multiplicative constant as in (i) the solution is unique 

(Coddington 1961). 
In our first method of solution (eliminating p ) ,  with a l ( t )  =MowfA:'*p2(t)  any 

solution of (2 .17 )  and A I  ( f 0 )  a choice of A in (2.161, we calculate from (2.15a, c )  

y1( t )  = (2MoW;)- ' (&l+2Ea,) ,  ( 4 . 9 a )  

@ l i t )  = ( M o w ; ) - * [ c i ~ / ( 4 a ~ )  + ecil + E  ' a ,  + A  lizl&~4O/a1]. (4 .9b )  

On differentiating (4 .96 )  once and twice, using (2 .17 )  to express (Y1 in terms of oil 
and a l ,  we can establish that P I  satisfies (2 .20 ) .  Our second method (eliminating a )  
gives, with p z ( t ) = A : " a 2 ( t ) / M o  any solution of (2 .20)  and A2 (ZO) a choice of A in 
(2.161, 

yz ( t )  = - fMn(6z - 2 ~ ~ 2 ) ~  ( 4 . 1 0 ~ )  

az ( t )  = k f ; [ @ : / ( 4 p 2 )  - E b z + E  2 P z + A 2 / ( M i P 2 ) ] .  (4 .106)  
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Again we may check that a2  satisfies (2.17) in accordance with the uniqueness 

Let us write the invariants rip', rIQ' of (4.2u, 6 )  in the form 
theorem (ii) above or, equivalently, the characterisation of Wollenberg (1980). 

r"'= cul( t )Q2+pl( t )P2+2yl( t )QP,  ( 4 . 1 1 ~ )  

f ( Q )  = 6 2 ( t ) Q 2  + p 2 ( t ) P 2  + 272(t)QP; (4.11b) 

then from (2.19), (2.22) we see that 

(4.12) f'P' = M o w ~ ; l / 2 r ' P ' ,  71 Q i = M~~ 2 ; 1 /2r(Q) 

Also, from (4.2) 

P2(t)  = w b 2 ( t ) .  (4.13) 

Let us suppose that f(" = zr'" where z is a dimensionless constant; then equating 
the coefficients of Q 2 ,  P 2  and QP in (4.2~1, b) gives 

w : p 2  = z [l /u2 + (c? - w : u 2 = ( 1 / Z ) [ 1 / p 2 + ( p + F p ) 2 ]  (4.14u, b )  

( 4 . 1 4 ~ )  

where we must remember that p, U satisfy the Pinney equations (2.18), (2.21). In $ 5 
we shall solve equations (4.14) in the case of a damped oscillator. 

2 4 2  
E l ( f )  =MwcP ( t ) ,  

p (p + E p  ) = -zu(d .  - &U) ,  

5. The case of damping 

We consider example (a) of 8 2. This is the only case in which np = 0,. Thus E = -r 
and 

(5.1) 2 2 1/2 np=n,=o=(w,-r) . 

p 2  + w 2 p 2  + l / p 2  = CO, 

In this case the Pinney equations (2.18), (2.21) admit the first integrals 

(5.2a, b) 

where C, D are dimensionless positive constants. Equations (4.14), (5.2) reduce to 

(5.3a, b )  

b 2 + w 2 u 2 + l / u  2 = D w ,  

C = zD, (p + z U 2 )  + (riw ) (pp - zUb)  = c, 
2 

pp+zuc?=r(p2-zu ). (5.3c) 
Let us wri teX = p 2 + z u 2 ,  Y = p  2 - z u  2 ; then (5.3b,c) become 

wx + l(r/w ) Y = c, +X = ry. ( 5 . 4 ~  b )  
Hence Y satisfies the equation 

Y+4w2Y = O .  (5.4c) 
From (5.4) we may easily calculate p 2  and z u 2 ;  hence from (4.9a), ( 4 . 1 0 ~ )  and (4.13) 
we calculate the coefficients in f(", fcQ' given by (4.11~1, b).  These are 

c.ul(t) = z&z( t )  

=fM&",C/w + [ 2 p 2 ( 0 ) - C / ~ ] ~ ~ ~  2wt 

+ ( r w ) - ' [ c w  - ( w : - 2 r 2 ) p 2 ( 0 ) - z w ~ u 2 ( ~ ) ]  sin 2wt), (5 .5u  ) 
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P d t )  = zP2(t)  

= &&c/o + [2za2(0)  - C / w ]  cos 2wt 

- (TO)- ' [CW - ( w ~ - ~ ~ ~ ) z ( T ~ ( o ) - w ~ ~ ~ ( o ) ]  sin 2wt}, (5 .56)  

i h ( t )  = Z Y 2 ( t )  

= - $[Mow;/(w r ) ~ { c r ~ / ~  8 - w[c/w -p2(o)  - 2(+*(0)] COS 2wt 

+ r[p2(o) -2a2(0)] sin 2wt). ( 5 . 5 c )  

Taking p? = a? = cos wt, p:  = a: = sin wt, equations (2.23),  (2.24) give 

p 2 ( t )  = I cos2 ut + m sin2 ut + 2n cos wt sin u t ,  

a2it) = I '  cos2 wt + m' sin2 wt  + 2n' cos wt  sin wt, 

Comparing equations (5.5a, b )  and (5.6a, b )  we see that 

(5.6a) 

(5 .66)  

2 - 2  I m - n  = U  , 
1" 1 - 12 = - 2 ,  

I = p 2 ( 0 ) ,  m = C / w  - p 2 ( 0 ) ,  n = (2rw)-'[cw - ( w ~ - 2 r 2 ) p 2 ( 0 ) - ~ w ~ a 2 ( ~ ) ] ,  

I '  = a2(0) ,  zm' = C / w  - za2(0) ,  
(5 .7a)  

zn '=  -(2rw)-'[cw - ( w 5 2 r 2 ) ~ a 2 ( 0 )  - & p 2 ( 0 ) ] .  ( 5 . 7 b )  

It is now quite clear that to satisfy lm - n 2 =  l ' m ' - - n r 2  =K2,  we must choose z = 1 
and (with p 2 ( 0 ) ,  ~ ' ( 0 )  arbitrary) C a root of the quadratic equation 

w 2 ~ 2 - ~ ~ ~ w ~ [ p 2 ( o ) + a 2 ( o ) ] + w ~ [ p 2 ( o ) + a 2 ~ o ) ] 2 - ~ w ~ r 2 ~ 2 ~ o ~ ( + 2 ( o ) + ~ r 2  = 0. (5.8) 

An explicit form for any quadratic invariant f ( P ) = f i Q )  for the damped oscillator 
results when we insert a value for C from (5 .8 ) ,  together with z = 1 ,  into ( 5 . 5 ) ,  (4.11). 

5.1. The Hamiltonian as a special quadratic invariant 

As a special case we choose 

p 2 ( 0 )  = a2(0) = C / ( 2 w ) ;  

then equation (5.8) requires 

c = 2. 

(5 .9a)  

(5 .9b)  

From ( 5 . 5 )  we see that C, P, 7 remain constant and the corresponding invariant is 

f = 2Mow * / U ,  

where 
(5 .10a)  

K = $Mo&Q2 + i P 2 / M o  - rQP (5.106) 

is the canonical Hamiltonian derived by Colegrave and Abdalla (1981). We note that 
equations ( 5  - 9 )  describe the special solution p = w of the Pinney equation p + w 2p = 
P .  

-3  

5.2. Parametrisation for rip), fiQ) 
We may parametrise rip) = fP(m, n ) ,  = r ( Q ) ( m ' ,  n ' )  from (4.2), (5.6) with 

I = ( n  + w - 2 ) / m ,  I!= ( n ' 2 + w - 2 ) / m r .  (5.11) 
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Since {f")} = {IiQJ} it is clear that a bijective correspondence m, n + m' ,  n'  must 
exist between the parameters. 

5.3. The case of constant mass 

When F+  0 equations (5.3) give (with z = 1) 

p 2  +a2 = c/w, .  

Looking at equations (5.6) we see that this requires 

I + I 1 =  m + m ' ,  n +n '=O.  

Using (5.11), (5.13) we have the bijective correspondence 
m ' = ( n 2 + o i 2 ) / m ,  n ' =  -n 

(5.12) 

(5.13) 

(5.14) 

5.4. Connections between the linear and quadratic invariants 

Taking A = 0 in (2.16) leads to the simple connection I = J 2  between the quadratic 
invariant I and a certain invariant J.  Since there cannot be more than two independent 
functions of two variables, it follows that when A # 0 

(5.15) I = aJ: + bJz + 2cJ1J2, 
where a ,  6, c are constants and J 1 ,  J2  are two independent linear invariants. 

6. Conclusion 

The time-independent oscillator has the group structure associated with equations 
(2.9) and (2.18) with & ( t )  = 0 (Wulfman and Wybourne 1976). We have shown that 
the invariants, and hence the symmetries, of the variable-mass oscillator are described 
by the two sets of similar equations (2.9), (2.18) and (2.11), (2.21) which are associated 
with the equations of motion for the (scaled) momentum and coordinate respectively. 
The connection between the constants of the motion and the group SL(3, [w) of the 
one-dimensional time-dependent oscillator is discussed fully by Prince and Eliezer 
(1980). Group-theoretical methods are discussed also by Wolf (1981). 

We have shown that the family of linear invariants {J"'} coincides with the family 
{ J i Q ) }  for all functions E ( t ) ;  similarly the family of quadratic invariants {I")} coincides 
with the family { I ( Q J }  and obviously the quadratic invariants are quadratic functions 
of the linear ones. The alternative forms for the quadratic invariants have enabled 
us to calculate explicit results in the case of exponentially damped (or constant) mass. 
In this case the Hamiltonian is a special quadratic invariant. 

We hope to extend the explicit formulae for I"' or I c Q )  to the strongly pulsating 
oscillator (Colegrave and Abdalla 1982) and possibly to other cases. We feel, too, 
that some interesting applications can be made of the lowering and raising operators, 
a, at ,  introduced by Lewis and Riesenfeld (1969), in terms of which a quadratic 
invariant may be written 

I = h(a-a +;I, [a,  a + ] =  I .  
The case of variable frequency (Lewis and Riesenfeld 1969, Wollenberg 1980, 

Ray et a1 1982) leads to corresponding linear and quadratic invariants, as discussed 
in D 3 .  
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